I wasn’t able to find online a complete example on how to persist OpenCV matrices in Python (so really NumPy arrays) to YAML like what cv::FileStorage will give you.
So here’s a short snippet:
import numpy as np import yaml # A yaml constructor is for loading from a yaml node. # This is taken from: http://stackoverflow.com/a/15942429 def opencv_matrix_constructor(loader, node): mapping = loader.construct_mapping(node, deep=True) mat = np.array(mapping["data"]) mat.resize(mapping["rows"], mapping["cols"]) return mat yaml.add_constructor(u"tag:yaml.org,2002:opencv-matrix", opencv_matrix_constructor) # A yaml representer is for dumping structs into a yaml node. # So for an opencv_matrix type (to be compatible with c++'s FileStorage) we save the rows, cols, type and flattened-data def opencv_matrix_representer(dumper, mat): mapping = {'rows': mat.shape[0], 'cols': mat.shape[1], 'dt': 'd', 'data': mat.reshape(-1).tolist()} return dumper.represent_mapping(u"tag:yaml.org,2002:opencv-matrix", mapping) yaml.add_representer(np.ndarray, opencv_matrix_representer) #example with open('output.yaml', 'w') as f: f.write("%YAML:1.0") yaml.dump({"a matrix": np.zeros((10,10)), "another_one": np.zeros((2,4))}, f) # a matrix: !!opencv-matrix # cols: 10 # data: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, # 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, # 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, # 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, # 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, # 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, # 0.0, 0.0, 0.0, 0.0, 0.0] # dt: d # rows: 10 # another_one: !!opencv-matrix # cols: 4 # data: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # dt: d # rows: 2 with open('output.yaml', 'r') as f: print yaml.load(f) # {'a matrix': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], # [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], # [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], # [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], # [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], # [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], # [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], # [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], # [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], # [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'another_one': array([[ 0., 0., 0., 0.], # [ 0., 0., 0., 0.]])}
There you go